Home Page

Black Holes and the "Dark Islands of Space"

Are "dark islands of space" the same thing as black holes?

by Dick Bain

Albert Einstein once wrote a paper explaining why black holes couldn't exist. (1) It is especially ironic that he rejected the idea of black holes, since it was his theoretical work that suggested to other physcists the possible existence of black holes.

A black hole is a body so dense with a gravitational field so intense that at a particular distance from it nothing, not even light, can escape from its grasp when it passes this close to the black hole. During the life of a star, energies created by the process of fusion of hydrogen to helium create enough outward pressure to overcome the force of gravity and prevent the star from collapsing. (UB Pg 460C, 465B.) When the star has burned most of its fuel and can no longer maintain the balancing pressure, the star collapses.

The remnent may be one of three things. If the collapse is gradual, the star may end up as a very dense, small star known as a white dwarf. Since some internal fusion continues the white dwarf does not collapse. This star is thought to end its active life as a black dwarf, a dead star after its fuel is totally expended. This is what some of the dark islands of space are according to The Urantia Book. (UB Pg 170B.)

Chandrasekhar calculated that a white dwarf star cannot exceed the Chandrasekhar limit of 1.4 solar masses. Stars larger than this apparently blow off a great deal of matter in a supernova when they no longer have enough internal pressure to avoid collapse. The remnent of this process is thought to be what is known as a neutron star. As the name suggests, the star consists entirely of neutrons, and is considerably denser than a white dwarf.

The total collapse of a neutron star is prevented by a phenomenon known as degeneracy pressure. A neutron star does not emit visible light, but some of them have been detected by the pulses of radio energy they emit. This type of star is known as a pulsar.

The third possiblility for the end of life of a star is a black hole.

If a star is above about three solar masses, when it reaches the end of its life and collapses, the supernova remnent may be too massive to be stabilized by degeneracy pressure, and may collapse past the neutron star stage.(2) When the collapsing star reaches a certain diameter, its gravitational field becomes so intense that whatever is closer to the star than a certain distance-known as the Schwartzchild radius (1) or event horizon-can never escape from the star's gravitational grasp.

A logical question, and one that has bothered many theorists is: Does the star continue to contract to an infinitesimal point, known as a singularity? This would mean that the star would be squeezed to such an extent that even basic particles like electrons couldn't exist. Under these conditions, the black hole would consist of the simplest particles possible, identified by the Urantia Book as ultimatons. However, the book tells us that ultimatons are unaffected by gravitational fields (UB Pg 465A), and therefore they could leak out of the black hole, thus reducing its mass before it had contracted to a singlularity.

Physicist Stephen Hawking proposed a different mechanism whereby particles could escape from a black hole, thus eventually evaporating it. Physcists early proposed that the black hole would not contract to a singularity, at least in our time frame of reference. Since time and space are severely warped in the volume close to the surface of the black hole, all events occuring there, including the stars' contraction, would appear to take a very long time, much longer than the present age of the universe to occur. In fact, black holes were referred to as "frozen stars" before they were called black holes.

Astronomers also have seen evidence of black holes at the center of many galaxies. (3) The centers of these suspect galaxies show one or more large jets of gas emitted from the center of the galaxy at right angles to the galactic plane. The astronomers feel that the gas jets are effects caused by the black hole.

Another indication of black holes is a rapidly whirling ring of material surrounding whatever is at the center of these galaxies. This whirling ring of gas and dust is also seen around the dark companion of some dual stars. The intense gravity of the black hole strips material from its visible companion, or companions in the case of a black hole in the center of a galaxy. As the material moves closer to the black hole, it is compressed and heated and gives off X-rays. These X-rays have been detected by several X-ray telescope satellites in the past few decades.

The speed of the gas spiraling in toward the black hole can be determined by measuring its doppler shift on either side of the black hole. The doppler shift is the change in the frequency of the light given off by the spiraling ring material due to its motion towards us or away from us. The speed of this material and the apparent size of what it is orbiting gives us an idea of the mass and the volume it occupies. Though the size of some of the objects at the center of the galaxies is astronomically small, the calculated masses are as high as several million suns. (3) An object this dense could hardly be anything but a black hole.

I have been asked before if black holes are mentioned in The Urantia Book. Specifically, are the dark bodies around Havona or the dark islands mentioned in the book black holes? We can decide quite easily about the dark bodies. On page 153 the authors tell us that these bodies "...neither reflect nor absorb light..." Black holes don't reflect light, but they certainly do absorb it.

In the book, the dark islands of space are defined as: "..the dead suns and other large aggregations of matter devoid of heat and light." They go on to mention: "The density of some of these large masses is well-nigh unbelievable." Black holes, neutron stars, and burned out white dwarfs (black dwarfs) all fit this description, so all could be candidates.

Another fact the authors give us is that the dark islands are "vast dynamos" that can "...mobilize and directionalize these energies." They tell us that Supreme Power Centers use the dark islands to control the flow of energy in the local universe. The black dwarfs and neutron stars both could perform in this role, but since nothing can escape from the gravity grasp of a black hole, how could it be used tocontrol energy? And if it is a dead star, how could it be a "vast dynamo"?

The authors of The Urantia Book tell us that there are numerous higher forms of energy with which we mortals are not familiar. One we are familiar with is electromagnetic radiation, especially in its visual form, light. When the authors speak of dark islands directionalizing energies, perhaps they are referring to the higher energy forms which either don't respond to gravity, or respond differently than light. If so, then perhaps black holes can be used to control energy; perhaps they are vast dynamos for some of the higher forms of energy. We can't exclude black holes as being dark islands, but the black dwarfs and neutron stars seem like more likely candidates to me.

Perhaps we'll have to wait till we get to the mansion worlds to get an answer regarding black holes and the dark islands of space. Till then we can amuse ourselves with endless speculation, unless of course we find a dark island orbiting our sun that we can study, and discover those higher forms of energy that we are ignorant of now. Maybe in a few millenia...

(1) Jeremy Bernstein, "The Father of Black Holes", Scientific American, July, 1996

(2) Groilers Multimedia Encyclopedia 1994, "Supernova"

(3) Ford and Tsvetanov, "Massive Black Holes in the Hearts of Galaxies", Sky and Telescope, June 1996

A service of
The Urantia Book Fellowship